A Generalization of Spatial Monte Carlo Integration
نویسندگان
چکیده
Spatial Monte Carlo integration (SMCI) is an extension of standard and can approximate expectations on Markov random fields with high accuracy. SMCI was applied to pairwise Boltzmann machine (PBM) learning, superior results those from some existing methods. The approximation level be changed, it proved that a higher-order statistically more accurate than lower-order approximation. However, as proposed in the previous studies suffers limitation prevents application method dense systems. This study makes two different contributions follows. A generalization (called generalized (GSMCI)) proposed, which allows relaxation above-mentioned limitation; moreover, statistical accuracy bound GSMCI proved. first contribution this study. new PBM learning based obtained by combining persistent contrastive divergence. greatly improves learning. second
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Monte-Carlo and Quasi-Monte-Carlo Methods for Numerical Integration
We consider the problem of numerical integration in dimension s, with eventually large s; the usual rules need a very huge number of nodes with increasing dimension to obtain some accuracy, say an error bound less than 10−2; this phenomenon is called ”the curse of dimensionality”; to overcome it, two kind of methods have been developped: the so-called Monte-Carlo and Quasi-Monte-Carlo methods. ...
متن کاملNumerical Integration and Monte Carlo Integration
Here we will begin by deriving the basic trapezoidal and Simpson’s integration formulas for functions that can be evaluated at all points in the integration range, i.e, there are no singularities in this range. We will also show how the remaining discretization errors present in these low-order formulas can be systematically extrapolated away to arbitrarily high order; a method known as Romberg...
متن کاملInfinite-Dimensional Monte Carlo Integration
In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers and a a particular Monte Carlo method numerically computes the Riemann integral. Whereas other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integral...
متن کاملMonte Carlo integration with subtraction
This paper investigates a class of algorithms for numerical integration of a function in d dimensions over a compact domain by Monte Carlo methods. We construct a histogram approximation to the function using a partition of the integration domain into a set of bins specified by some parameters. We then consider two adaptations; the first is to subtract the histogram approximation, whose integra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2021
ISSN: ['0899-7667', '1530-888X']
DOI: https://doi.org/10.1162/neco_a_01365